Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra. | \(-h_{4}-2h_{3}-3h_{2}+h_{1}\) | \(g_{1}\) | \(g_{2}\) | \(g_{5}\) |
weight | \(0\) | \(\omega_{1}\) | \(\omega_{3}\) | \(\omega_{1}+\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{1}+10\psi\) | \(\omega_{3}-10\psi\) | \(\omega_{1}+\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{\omega_{1}+10\psi} \) → (1, 0, 0, 10) | \(\displaystyle V_{\omega_{3}-10\psi} \) → (0, 0, 1, -10) | \(\displaystyle V_{\omega_{1}+\omega_{3}} \) → (1, 0, 1, 0) | ||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | ||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
| ||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{3}\) | \(\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | ||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}+10\psi\) \(-\omega_{1}+\omega_{2}+10\psi\) \(-\omega_{2}+\omega_{3}+10\psi\) \(-\omega_{3}+10\psi\) | \(\omega_{3}-10\psi\) \(\omega_{2}-\omega_{3}-10\psi\) \(\omega_{1}-\omega_{2}-10\psi\) \(-\omega_{1}-10\psi\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | ||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}+10\psi}\oplus M_{-\omega_{2}+\omega_{3}+10\psi}\oplus M_{-\omega_{1}+\omega_{2}+10\psi}\oplus M_{-\omega_{3}+10\psi}\) | \(\displaystyle M_{\omega_{3}-10\psi}\oplus M_{\omega_{1}-\omega_{2}-10\psi}\oplus M_{\omega_{2}-\omega_{3}-10\psi}\oplus M_{-\omega_{1}-10\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus 3M_{0}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{3}}\) | ||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}+10\psi}\oplus M_{-\omega_{2}+\omega_{3}+10\psi}\oplus M_{-\omega_{1}+\omega_{2}+10\psi}\oplus M_{-\omega_{3}+10\psi}\) | \(\displaystyle M_{\omega_{3}-10\psi}\oplus M_{\omega_{1}-\omega_{2}-10\psi}\oplus M_{\omega_{2}-\omega_{3}-10\psi}\oplus M_{-\omega_{1}-10\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus 3M_{0}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{3}}\) |